19 research outputs found

    Glimepiride Administered in Chow Reversibly Impairs Glucose Tolerance in Mice

    Get PDF
    Sulfonylureas are a class of antidiabetes medications prescribed to millions of individuals worldwide. Rodents have been used extensively to study sulfonylureas in the laboratory. Here, we report the results of studies treating mice with a sulfonylurea (glimepiride) in order to understand how the drug affects glucose homeostasis and tolerance. We tested the effect of glimepiride on fasting blood glucose, glucose tolerance, and insulin secretion, using glimepiride sourced from a local pharmacy. We also examined the effect on glucagon, gluconeogenesis, and insulin sensitivity. Unexpectedly, glimepiride exposure in mice was associated with fasting hyperglycemia, glucose intolerance, and decreased insulin. There was no change in circulating glucagon levels or gluconeogenesis. The effect was dose-dependent, took effect by two weeks, and was reversed within three weeks after removal. Glimepiride elicited the same effects in all strains evaluated: four wild-type strains, as well as the transgenic Grn−/− and diabetic db/db mice. Our findings suggest that the use of glimepiride as a hypoglycemic agent in mice should proceed with caution and may have broader implications about mouse models as a proxy to study the human pharmacopeia

    TDP-43 Proteinopathy in Aging: Associations with Risk-Associated Gene Variants and with Brain Parenchymal Thyroid Hormone Levels

    Get PDF
    TDP-43 proteinopathy is very prevalent among the elderly (affecting at least 25% of individuals over 85 years of age) and is associated with substantial cognitive impairment. Risk factors implicated in age-related TDP-43 proteinopathy include commonly inherited gene variants, comorbid Alzheimer\u27s disease pathology, and thyroid hormone dysfunction. To test parameters that are associated with aging-related TDP-43 pathology, we performed exploratory analyses of pathologic, genetic, and biochemical data derived from research volunteers in the University of Kentucky Alzheimer\u27s Disease Center autopsy cohort (n = 136 subjects). Digital pathologic methods were used to discriminate and quantify both neuritic and intracytoplasmic TDP-43 pathology in the hippocampal formation. Overall, 46.4% of the cases were positive for TDP-43 intracellular inclusions, which is consistent with results in other prior community-based cohorts. The pathologies were correlated with hippocampal sclerosis of aging (HS-Aging) linked genotypes. We also assayed brain parenchymal thyroid hormone (triiodothyronine [T3] and thyroxine [T4]) levels. In cases with SLCO1A2/IAPP or ABCC9 risk associated genotypes, the T3/T4 ratio tended to be reduced (p = .051 using 2-tailed statistical test), and in cases with low T3/T4 ratios (bottom quintile), there was a higher likelihood of HS-Aging pathology (p = .025 using 2-tailed statistical test). This is intriguing because the SLCO1A2/IAPP and ABCC9 risk associated genotypes have been associated with altered expression of the astrocytic thyroid hormone receptor (protein product of the nearby gene SLCO1C1). These data indicate that dysregulation of thyroid hormone signaling may play a role in age-related TDP-43 proteinopathy

    Obesity and Diabetes Cause Cognitive Dysfunction in the Absence of Accelerated β-Amyloid Deposition in a Novel Murine Model of Mixed or Vascular Dementia

    Get PDF
    Mid-life obesity and type 2 diabetes mellitus (T2DM) confer a modest, increased risk for Alzheimer\u27s disease (AD), though the underlying mechanisms are unknown. We have created a novel mouse model that recapitulates features of T2DM and AD by crossing morbidly obese and diabetic db/db mice with APPΔNL/ΔNLx PS1P264L/P264L knock-in mice. These mice (db/AD) retain many features of the parental lines (e.g. extreme obesity, diabetes, and parenchymal deposition of β-amyloid (Aβ)). The combination of the two diseases led to additional pathologies-perhaps most striking of which was the presence of severe cerebrovascular pathology, including aneurysms and small strokes. Cortical Aβ deposition was not significantly increased in the diabetic mice, though overall expression of presenilin was elevated. Surprisingly, Aβ was not deposited in the vasculature or removed to the plasma, and there was no stimulation of activity or expression of major Aβ-clearing enzymes (neprilysin, insulin degrading enzyme, or endothelin-converting enzyme). The db/AD mice displayed marked cognitive impairment in the Morris Water Maze, compared to either db/db or APPΔNLx PS1P264L mice. We conclude that the diabetes and/or obesity in these mice leads to a destabilization of the vasculature, leading to strokes and that this, in turn, leads to a profound cognitive impairment and that this is unlikely to be directly dependent on Aβ deposition. This model of mixed or vascular dementia provides an exciting new avenue of research into the mechanisms underlying the obesity-related risk for age-related dementia, and will provide a useful tool for the future development of therapeutics

    RNA Oxidation Adducts 8-OHG and 8-OHA Change with Aβ42 Levels in Late-Stage Alzheimer's Disease

    Get PDF
    While research supports amyloid-β (Aβ) as the etiologic agent of Alzheimer's disease (AD), the mechanism of action remains unclear. Evidence indicates that adducts of RNA caused by oxidation also represent an early phenomenon in AD. It is currently unknown what type of influence these two observations have on each other, if any. We quantified five RNA adducts by gas chromatography/mass spectroscopy across five brain regions from AD cases and age-matched controls. We then used a reductive directed analysis to compare the RNA adducts to common indices of AD neuropathology and various pools of Aβ. Using data from four disease-affected brain regions (Brodmann's Area 9, hippocampus, inferior parietal lobule, and the superior and middle temporal gyri), we found that the RNA adduct 8-hydroxyguanine (8-OHG) decreased, while 8-hydroxyadenine (8-OHA) increased in AD. The cerebellum, which is generally spared in AD, did not show disease related changes, and no RNA adducts correlated with the number of plaques or tangles. Multiple regression analysis revealed that SDS-soluble Aβ42 was the best predictor of changes in 8-OHG, while formic acid-soluble Aβ42 was the best predictor of changes in 8-OHA. This study indicates that although there is a connection between AD related neuropathology and RNA oxidation, this relationship is not straightforward

    Glimepiride Administered in Chow Reversibly Impairs Glucose Tolerance in Mice

    Get PDF
    Sulfonylureas are a class of antidiabetes medications prescribed to millions of individuals worldwide. Rodents have been used extensively to study sulfonylureas in the laboratory. Here, we report the results of studies treating mice with a sulfonylurea (glimepiride) in order to understand how the drug affects glucose homeostasis and tolerance. We tested the effect of glimepiride on fasting blood glucose, glucose tolerance, and insulin secretion, using glimepiride sourced from a local pharmacy. We also examined the effect on glucagon, gluconeogenesis, and insulin sensitivity. Unexpectedly, glimepiride exposure in mice was associated with fasting hyperglycemia, glucose intolerance, and decreased insulin. There was no change in circulating glucagon levels or gluconeogenesis. The effect was dose-dependent, took effect by two weeks, and was reversed within three weeks after removal. Glimepiride elicited the same effects in all strains evaluated: four wild-type strains, as well as the transgenic Grn−/− and diabetic db/db mice. Our findings suggest that the use of glimepiride as a hypoglycemic agent in mice should proceed with caution and may have broader implications about mouse models as a proxy to study the human pharmacopeia

    Alzheimers Disease: Pathological Mechanisms and Recent Insights

    No full text

    Alteration of mTOR signaling occurs early in the progression of Alzheimer disease (AD): analysis of brain from subjects with pre-clinical AD, amnestic mild cognitive impairment and late-stage AD

    No full text
    The clinical symptoms of Alzheimer disease (AD) include a gradual memory loss and subsequent dementia, and neuropathological deposition of senile plaques and neurofibrillary tangles. At the molecular level, AD subjects present overt amyloid b (Ab) production and tau hyperphosphorylation. Ab species have been proposed to overactivate the phosphoinositide3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) axis, which plays a central role in proteostasis. The current study investigated the status of the PI3K/Akt/mTOR pathway in post-mortem tissue from the inferior parietal lobule (IPL) at three different stages of AD: late AD, amnestic mild cognitive impairment (MCI) and pre-clinical AD (PCAD). Our findings suggest that the alteration of mTOR signaling and autophagy occurs at early stages of AD. We found a significant increase in Ab (1–42) levels, associated with reduction in autophagy (Beclin-1 and LC-3) observed in PCAD, MCI, and AD subjects. Related to the autophagy impairment, we found a hyperactivation of PI3K/ Akt/mTOR pathway in IPL of MCI and AD subjects, but not in PCAD, along with a significant decrease in phosphatase and tensin homolog. An increase in two mTOR downstream targets, p70S6K and 4EBP1, occurred in AD and MCI subjects. Both AD and MCI subjects showed increased, insulin receptor substrate 1, a candidate biomarker of brain insulin resistance, and GSK-3b, a kinase targeting tau phosphorylation. Nevertheless, tau phosphorylation was increased in the clinical groups. The results hint at a link between Ab and the PI3K/Akt/mTOR axis and provide further insights into the relationship between AD pathology and insulin resistance. In addition, we speculate that the alteration of mTOR signaling in the IPL of AD and MCI subjects, but not in PCAD, is due to the lack of substantial increase in oxidative stres

    sj-pdf-1-jcb-10.1177_0271678X231216142 - Supplemental material for Using digital pathology to analyze the murine cerebrovasculature

    No full text
    Supplemental material, sj-pdf-1-jcb-10.1177_0271678X231216142 for Using digital pathology to analyze the murine cerebrovasculature by Dana M Niedowicz, Jenna L Gollihue, Erica M Weekman, Panhavuth Phe, Donna M Wilcock, Christopher M Norris and Peter T Nelson in Journal of Cerebral Blood Flow & Metabolism</p

    8-OHG and 8-OHA change in opposite directions in the late-stage AD brain.

    No full text
    <p>The 8-OHG adduct decreased (p = 0.046) in the disease state, whereas the 8-OHA adduct increased in AD brain (p = 0.038). Data are expressed as the number of oxidatively modified bases per 1000 bases of total RNA. The analysis included gender, age and PMI. Values were averaged over several disease-affected brain regions (<i>c.f. </i><a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0024930#pone-0024930-t001" target="_blank">Table 1</a>); no significant changes were seen in cerebellum. NCI: No Cognitive Impairment; AD: Alzheimer's disease. Rotated Hourglass: mean.</p
    corecore